X-rays, or roentgen rays, are electromagnetic waves in which periodically variable electric and magnetic fields are perpendicular to each other and to the direction of propagation. Thus they are identical in nature with visible light and all the other types of radiation that constitute the electromagnetic spectrum. In general, x-rays are generated as the result of energy transitions of atomic electrons caused by the bombardment of a material of high atomic weight by high-energy electrons. See also Electromagnetic radiation.
Following W. R. Röntgen's discovery of “a new kind of ray” in 1895, other scientists found the essential experimental conditions to prove that x-rays can be polarized, diffracted by crystals, refracted in prisms and in crystals, reflected by mirrors, and diffracted by ruled gratings. See also X-ray optics.
The range of x-rays in the electromagnetic spectrum, as excited in x-ray tubes by the bombardment of anode targets by cathode electrons under a high accelerating potential, overlaps the ultraviolet range on the order of 100 nanometers on the long-wavelength side, and the shortest-wavelength limit moves downward as voltages increase. An accelerating potential of 109 volts, now readily generated, produces a wavelength of 10−15 m (10−6 nm). An average wavelength used in research is 0.1 nm, or about 1/6000 the wavelength of yellow light. See also X-ray tube.
In diffraction, refraction, polarization, and interference phenomena, x-rays, together with all other related radiations, appear to act as waves. In other phenomena—such as the appearance of sharp spectral lines, a definite short-wavelength limit of the continuous “white” spectrum, the shift in wavelength of x-rays scattered by electrons in atoms (Compton effect), and the photoelectric effect—the energy seems to be propagated and transferred in quanta, called photons. See also Compton effect; Electron diffraction; Neutron diffraction; Photoemission;
Important uses have been found for x-rays in many fields of scientific endeavor, for example, roentgen spectrometry and roentgen diffractometry. Extensive tables of the wavelengths of x-ray emission lines in series (K, L, M, and so on) and so-called absorption edges, characteristic of the chemical elements, afford the necessary information for chemical analyses, exactly as in the case of optical emission spectra and for derivation of theories of atomic structure to account for the origin of spectra. See also Historadiography; Microradiography; Radiation biology; Radiography; Radiology; X-ray crystallography; X-ray diffraction; X-ray fluorescence analysis; X-ray microscope; X-ray powder methods.
Post a Comment